admin
时间:2024-01-12 07:49:50来源:本站整理点击:
制作课件必备功能
1/7方法1:点击“新建课件”,选择背景模板,再点击“新建”,就进入了课件编辑界面。在此界面能更改设置课件封皮以及背景图。可以是自己导入图片,也可以选择使用软件中的背景图。
方法2:可以导入ppt课件使用,但是需要注意的是,只能导入pptx格式的。导入到希沃软件里格式会有变化,需要重新排版,设置效果。
2/7插入文本框。点击“文本”,在编辑界面滑动鼠标即可出现文本框,希沃的最大优势在于能一步解决的问题,绝不用两个步骤。
3/7设计课堂活动。课堂活动有5种活动可以制作,根据课程类型选择适合的使用。趣味分类、超级分类、选择填空、知识配对与分组竞争。课堂上的实时游戏让学生有参与感与体验探索。
4/7制作思维导图。将本节课的重点难点通过知识导图的形式直观的显示出来,对整节课的脉络有清晰的了解。
5/7使用几何画板工具。圆形、圆柱、圆锥、长方体等立体图形可以绘制,方便快捷,立体感十足。
6/7使用函数工具。可课堂现场做图,直观呈现,学生可以清晰看到图像生成的过程,加深印象,理解深刻。
7/7使用学科工具,语文、数学、物理、化学等学科都有相关学科的特色工具,丰富了课堂讲授形式,提高课堂效率
教学重难点的撰写
一、教学重点
教学重点是依据教学目标,在对教材进行科学分析的基础上而确定的最基本、最核心的教学内容,一般是一门学科所阐述的最重要的原理、规律,是学科思想或学科特色的集中体现。它的突破是一节课必须要达到的目标,也是教学设计的重要内容。教学重点的确立一般依据教学流程中用时最长,教材中篇幅比例最大,考点最多的内容。
二、教学难点
教学的难点是指学生不易理解的知识,或不易掌握的技能技巧。难点不一定是重点。也有些内容既是难点又是重点。
教学难点的确立一般依据:
1.情感态度价值观(创新、体会情感);
2.学生难以理解的知识点(音乐的节奏型,语文的写作手法,理科的公式、推理、实验,体育的动作要领、协调、团队,美术的构思和搭配。)
三、教学重难点案例
小学语文:《燕子专列》
重点:引导学生整体把握课文内容,理解重点词句,体会贯穿全文的爱心,增强环境保护、爱护鸟类意识。
难点:领会描写恶劣气候与环境的内容与人们奉献爱心的关系,感受这样写的表达效果。
初中数学:《反比类函数》
重点:掌握反比例函数定义/图像特征以及函数的性质
难点:如何抓住特征准确画出反比例函数图像
高中生物:《有丝分裂》
重点:细胞增殖的周期性;真核细胞有丝分裂的过程,以及有丝分裂过程中DNA和染色体的规律性变化
难点:真核细胞有丝分裂过程中,各个时期染色体行为变化
在新课程理念提倡对学生进行多元评价的背景下,初中毕业升学数学学科的考试仍是义务教育阶段的终极性评价之一,其考试结果仍然是评价学生是否达到义务教育阶段数学学科学习水平,和高中阶段学校招生的重要依据之一。
因此,数学毕业升学考试评价,依然被社会、家长、师生所关注,备考总复习显然异常重要。
数学总复习一直是老师们化精力进行研究的问题。如何提高效率使学生对初中数学的基本内容、基本理论和基本的思想方法系统地复习而不是"妙冷饭"。数学复习课教学过程设计,既要有利于学生加深理解和系统掌握所学过的知识,提高数学思维的能力和综合运用知识解题的能力,同时又要有利于增强学生学习数学的信心,有利于教师了解学生和改进教学工作,为学生进行后续学习奠定坚实的基础。其中复习课习题的选择异常重要,正如苏联教育家巴班斯基曾指出"教学过程是一种特殊的认识过程,它的特殊性在于它具有巩固性。"而在数学教学中,知识的巩固和技能的熟练往往通过复习课来实现,而习题教学设计的科学性又是复习课成功的关键,选择好的习题往往会起到事半功倍的作用。在以往的复习过程中,经常出现以下现象:
1、片面追求数量,忽视质量保证。
纵观我们毕业班的学生,每位同学历届全国各地中考试卷、精品试题是必备的,本地区的中考模拟试题也是人手一份。学生课下要做老师布置的试卷,课堂上几乎是满堂听老师讲解。这种大运动量的复习方法给学生带来的是生理上的疲惫、心里上的厌烦和思维上的混乱。面对如此繁多的复习资料,学生一直处于疲于应付各种任务的状态,大量的解题训练会让学生的思维处于混乱状态。
2、惯于过程积累,忽视合理分类。
在复习课上分析试卷往往因为时间有限,由于卷面内容比较多,所以教师讲得很快,学生对每部分内容也不会有太深的印象。在这时候的课堂上,教师也不顾学生的主体地位了,总认识该讲的讲到了自己就可以放心了;从学生角度讲,许多学生在考前复习时习惯于多做模拟题,而不是对考试的内容做全面的梳理,只做书后的习题,认为做的题越多越好。其实,当大量的信息杂乱无序地输入学生的头脑中时,如果没有合理的分类,在运用时会很难找到所需要的信息,这种只重视过程的积累而忽视合理分类的做法是应当引起注意的。
3、倾向机械模仿,忽视独立思考。
教学中常常会出现这样的问题:有的学生在课堂上听懂了教师讲解的例题,但课下做题时一旦题目有变或加以综合,就不知道该如何下笔了,找不到合理的解题方法。这是因为许多学生在平时的学习中缺乏独立思考的精神,习惯于跟着教师的思路走,习惯于听教师的讲解。在复习中倾向于大量模仿各种类型的题目,并寄希望于在中招考试中出现类似的题目。长期下去,许多学生逐渐丧失了独立思考的能力与习惯,常常很快把题目看一遍,感觉不会做,就急于求助于参考答案或教师和同学。还有的依赖于家教老师,并且认为这样做可以节省时间,可以多看一些题目。其实这种表面的省时省力,换来的是独立思考能力的下降和刻苦钻研精神的丧失,而独立思考的是数学中必不可缺的一种能力。
4、盲目拔高难度,忽视基础掌握。
通过解题方法训练可以提高解决问题的能力,这是众所周知的,但这是一个循序渐进的过程,不是几个月的突击就可以达到的。在数学总复习中,有些教师认为学生丢分比较多的是中等以上难度的题目,所以在总复习常常忽略了对基础知识的复习,而一味地让学生做一些高难度的题目;有些教师在平时的教学中也有明显的盲目拔高现象。这种做法也许对个别尖子生有好处,但对大部分的学生来说,将是欲速则不达。
在复习阶段,如何所学生轻松愉快不感乏味,全身心投入到复习过程中,同时让学生在这一阶段夯实基础、提高能力。我在近几年的初三复习中作了一些有益的尝试和积极的探索。一、注重创设问题情景,激发学生复习兴趣和积极性。
由于复习课的特殊性,我们在复习中往往比较注重单纯的知识梳理以及知识应用,这样有可能挫伤学生的复习兴趣和积极性。在复习课上可以通过设计一些情景问题的习题以激发学生复习的兴趣和动机。问题情景的创设应生动直观、富有启发、善于运用直观演示、实验操作、多媒体技术等手段,把抽象的问题具体化,枯燥的知识趣味化,为学生发现问题和探索问题创造条件。
1.设计情景问题,巩固数学双基。
在数学复习课上,必然要梳理以前所学的数学性质,对于这些纯记忆的东西我通过设计一些简单的习题帮助学生回顾,不仅可以改变复习的枯燥性,而且可以提高学生解决问题的能力。例如在复习直角三角形性质时,设计问题:如何把一个直角三角形分成两个等腰三角形?学生通过直角三角形中斜边上的中线等于斜边的一半这一性质很快解决了问题,这样一来既解决了问题,又起到了复习的目的,学生复习的兴趣和积极性提高了。其实在复习过程中,很多数学基础知识和基本方法我们可以通过设计数学问题来梳理。
2.借助教学软件,设计动态数学问题。
图形的三种基本运动方式是初中数学复习的重点和难点,借助"几何画板"等教学软件设计反映图形运动的习题,然后通过多媒体演示,学生能够直观地看到图形在运动中的变化,有利于丰富学生的空间想象力。通过训练,学生在这方面解题能力有所提高。
二、重视课本例习题的"再创造",夯实基础。
复习课中,习题设计只有紧紧围绕课本例习题,并在此基础上有所"创造",充分发挥教材的作用,才能跳出"题海苦战",以少胜多,有效地巩固基础知识,发展数学能力。对教师业说,必须做一个研究型的教师,这也是新课程对教师提出的要求。
1.对课本例习题进行整合,把握知识的整体性。
课本中每章节的例习题往往都是针对某一个知识点设计的,平时贮存在学生头脑中的知识也都是零散的,因而复习课的目的就是要将这些零散的知识按其内在规律或联系串成知识链,形成"合力",构筑起知识网络。所以,在复习教学设计中,我们要对课本中有关联的例习题进行认真研究,对它们进行重新整合,以培养学生解决综合问题的能力。例如复习"实数运算"这一内容时,设计例题:计算,选择此例的目的在于它综合了指数、分数指数、整数指数、零指数幂等意义,可谓题小量大,而且也能使学生对学过的有理数幂的意义有一个完整的回顾。又如,在复习反比例函数时,设计例题:已知点P(m,n)在反比例函数的图象上,且m,n是方程的两根,求反比例函数的解析式和点P到原点O的距离。在复习过程中,选择此例是非常恰当的,它以函数为中心,并把一元二次方程、韦达定理、两点间距离公式、完全平方公式等知识串联在一起,建立了以函数为核心的知识网络。可谓以点带面,多方综合,对提高学生的综合解题能力十分有益。
2.对课本例习题进行变式,突出数学技能、方法的本质。
从课本中的某个基本例习题出发,将条件中的数量或图形或关系加以改变,使之产生一些新的题目。进行变式设计重在变中求化,即在变化中体现化归,突出数学的基本方法。例如:已知△ABC中,AB=AC,以AB为直径的☉O交BC于D,DE切☉O于D,求证:DE⊥AC。
此例虽然比较简单,但分析此题过程中进行了条件和结论的互换,图形位置的变换,把切线的判定和性质有机结合起来,以不变求万变,万变不离其宗。这样既能激发学生的学习兴趣,同时培养学生灵活应用知识的能力。在复习过程中,我经常选择一些图形变化运动的
习题,而且都是形异实同。从一道题目的不同图形去认识它们的本质,做了题目,评析了题目,还改变了题目,这样大大地提高了学生的解题效率。
3.对课本例习题进行延伸拓展,揭示数学基础知识的深刻性。
教材中的例习题是经过编者精挑细选的,具有典型性、示范性,同时也给教师留下了广阔的创造空间,只要教师认真钻研,许多课本例习题都可以延伸拓展,类比迁移,衍生出一些新命题,以训练学生思维的广阔性、深刻性和创造性。例如在复习相似三角形时设计:已知,如图,在△ABC中,D是BC上的点,∠B=∠CAD
(1)求证:△CAB∽△CDA
(2)若BC=16,CD=9,求AC的长。
此题可以直接通过两角对应相等证明△CAB∽△CDA;然后根据相似三角形的对应边成比例进行计算。将此题可以继续延伸:(3)若AC=12,BD=7,求BC的长;(4)若AB=8,BD=7,AD=6,求BC的长。通过对一道几何基本图形的计算题进行挖掘,充分体现了方程思想在几何计算中的作用,学生由此掌握利用相似三角形性质进行计算的一般方法,是体现学生运用知识能力的好题。
4.把课本例习题由封闭型转向开放型、探索型,体现数学思维的灵活性。
年来,开放型、探索型试题是中考命题的新亮点,但教材很少有这类题,这就要求教师在复习课中对教材中的例习题进行加工、改造,使问题的结论或条件适当开放,由静态情景变成动态情景,将解题模式创设成"探究式"解题模式。
三、设计各种类型习题,提高学生解题能力。
众所周知,数学能力是通过解决数学问题体现出来的,数学问题又是数学知识的载体,好的数学问题,更是数学教学中"创新"的载体,在复习中问题教学占有非常重要的地位,而复习课不同于新课,没有固定的教材,正是基于此,在问题设计上有较大的选择空间,所以可根据不同的复习内容,设计不同类型的习题,培养学生各方面的能力。
1.设计阅读理解题,培养学生自学能力和处理信息能力。
新课程重视培养学生的自学能力,强调了学习方法的指导,学会学习,重视发现、形成知识的过程,这就要求学生在获取知识的过程中通过思考或自学来获得,选择阅读理解题可较好的得到体现。此类问题解题的思路与方法是认真把材料中所提供的信息作为解决问题的依据,进行归纳、迁移应用,多加联系,可培养学生的自学能力和处理信息能力。例如设计习题:阅读下面材料:对于平面图形A,如果存在一个圆,使图形上A的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖。对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称这个图形A被这些圆所覆盖。
例如,三角形被一个圆所覆盖,四边形被两个圆所覆盖。
回答下列问题:
(1)边长为1的正方形被一个半径为的圆所覆盖,的最小值是_________;
(2)边长为1的等边三角形被一个半径为的圆所覆盖,的最小值是_________;
(3)长为2,宽为1的矩形被两个半径都为的圆所覆盖,的最小值是_________,这两个圆的圆心距是_________。
这类题型主要通过分析、比较、抽象和概括等数学手段,运用已学过的数学知识和数学方法,对知识进行归纳总结、迁移应用,善于联想猜想、借鉴创新,它能很好地培养学生的自学能力。
2.设计应用性习题,培养学生分析问题、解决问题的能力。
新课程标准提出,数学课程应该成为喜欢和好奇心的源泉。而这样的数学课程就要从学生的生活经验和已有的知识体验开始,从身边的和容易引起想象的问题出发,让数学背景包含在学生熟悉的事物和具体情景之中,并与学生已经了解或学生学习过的数学知识相关联,特别是与学生生活中积累的常识性和那些学生已经具有的、但未经训练或不那么严格的数学知识体验相关联。在复习课中有目的选取一些取材生产生活、环境保护、国情国策、市场经营、社会热点、新闻时间、现代时尚等方面的应用题,这些情景新颖亲切的应用题,既有强烈的德育功能,能引起学生关注社会热点,了解时事政策,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用,提高应用数学知识解决实际问题的能力。
3.设计探索性习题,培养学生发现问题和分析问题的能力。
"数学学习与学生的身心发展"研究表明,每个学生都有分析、解决问题和创造的潜能,都有一种与生俱来的把自己当成探索者、研究者、发现者的本能,他们有要证实自己的思想欲望,如果数学课程把握了这一点,那么就有可能使学生更积极地学找解决问题的思路和答案,关键在于数学课程要提供好的内容素材,给学生提供充分的从事数学活动和探究数学问题的时间和空间,给学生"做数学"的机会,促进学生的这种发展,如在复习中,曾设计下例探索题:如图,,垂足为。
(1)当时,在线段上是否存在点,使?如果存在,求线段的长;如果不存在请说明理由。
(2)设,那么当之间满足什么关系时,在直线上存在点,使?
由探索性数学问题的特征可以看出它不具有定向的解题思路,解题时总要合情合理、实事求是的分析,要把归纳与演绎协调配合起来,把直觉发现与逻辑推理、运算相互结合起来,把一般能力和数学能力同时发挥出来。因此,通过探索性数学问题的解题活动,不仅可以促进数学知识和数学方法的巩固和掌握,而且更加有利于各方面能力的整体发展和思维品质的全面提高。
4.设计开放性习题,培养学生的创新意识和创造能力。
新课程标准强调,关注学生的个性差异,有效地实施有差异的教学,使每个学生都得到充分的发展,面对全体学生不同的学习需求,在复习课中可适当地设计开放性问题,题目的综合性不一定很大,如,在"四边形"复习课上我设计了这样一例开放题:梯形ABCD中,E、F、G、H分别是梯形ABCD各边AB、BC、CD、DA的中点,当梯形ABCD满足条件____时,四边形EFGH是菱形。数学开放题可以是条件开放、也可以是结论开放,或者是解题策略开放等。开放性问题的显著特征是答案的多样性和多层次性,解答时学生需要通过观察、比较、分析、综合甚至猜想,展开发散法,经过必要的推理才能得出正确的结论,学生解答过程突出了思维的多样性。
5.设计学科整合性习题,培养学生综合运用知识的能力。
在新课程的内容里增加了一个新的领域--实践与综合应用领域。这个领域不是在其它数学领域之外增加新的知识,而是强调数学知识的整体性、现实性和应用性,注意数学的现实背景以及与其它学科之间的联系。设计跨学科问题不仅可以培养学生综合应用知识能力,还可以为学生解题增添新的思路。在"反比例函数"复习课中,我设计了这样一题。
例:一定质量的氧气,它的密度()是它的体积()的反比例函数,当时,
(1)求与的函数关系式;
(2)求当时,氧气的密度。这类题型主要是考查学生对各科知识的整体性和综合性的认识。除了要考查学生一些数学知识外,还渗透了自然科学的知识,突出了数学应用的广泛性,同时也突出了数学作为工具学科的本质。
总之,通过近几年的实践表明,
第一,数学复习课习题设计应注重重点知识间的内在联系,相互渗透,不应是简单的重复,而且构建适合学生实际的训练体系;
第二,数学复习课习题设计应注重数学思想方法的运用和总结,掌握了好的方法,就能以不变应万变,做到重通法、重思想方法的提炼和升华,优化解题思维,在理性思维中培养和发展学生的数学思维能力;
第三,引导学生做好解题后的反思,通过回顾所完成的解答,以及重新思考和检查解题结果,从而巩固知识和发展解题能力。当然,在复习课的例习题设计所呈现的背景是否与学生的经验联系的更密切一些,设计的习题是否更适合不同层次学生的发展需要,还有待于进一步探讨。
希望对你有用和帮到你。
制作课件必备功能
1/7方法1:点击“新建课件”,选择背景模板,再点击“新建”,就进入了课件编辑界面。在此界面能更改设置课件封皮以及背景图。可以是自己导入图片,也可以选择使用软件中的背景图。
方法2:可以导入ppt课件使用,但是需要注意的是,只能导入pptx格式的。导入到希沃软件里格式会有变化,需要重新排版,设置效果。
2/7插入文本框。点击“文本”,在编辑界面滑动鼠标即可出现文本框,希沃的最大优势在于能一步解决的问题,绝不用两个步骤。
3/7设计课堂活动。课堂活动有5种活动可以制作,根据课程类型选择适合的使用。趣味分类、超级分类、选择填空、知识配对与分组竞争。课堂上的实时游戏让学生有参与感与体验探索。
4/7制作思维导图。将本节课的重点难点通过知识导图的形式直观的显示出来,对整节课的脉络有清晰的了解。
5/7使用几何画板工具。圆形、圆柱、圆锥、长方体等立体图形可以绘制,方便快捷,立体感十足。
6/7使用函数工具。可课堂现场做图,直观呈现,学生可以清晰看到图像生成的过程,加深印象,理解深刻。
7/7使用学科工具,语文、数学、物理、化学等学科都有相关学科的特色工具,丰富了课堂讲授形式,提高课堂效率
一、函数自身的对称性探究
定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是
f(x)+f(2a-x)=2b
证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P'(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)
即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)
∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。
故点P'(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P'关于点A(a,b)对称,充分性得征。
推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0
定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是
f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)
推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)
定理3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。
①②的证明留给读者,以下给出③的证明:
∵函数y=f(x)图像既关于点A(a,c)成中心对称,
∴f(x)+f(2a-x)=2c,用2b-x代x得:
f(2b-x)+f[2a-(2b-x)]=2c………………(*)
又∵函数y=f(x)图像直线x=b成轴对称,
∴f(2b-x)=f(x)代入(*)得:
f(x)=2c-f[2(a-b)+x]…………(**),用2(a-b)-x代x得
f[2(a-b)+x]=2c-f[4(a-b)+x]代入(**)得:
f(x)=f[4(a-b)+x],故y=f(x)是周期函数,且4|a-b|是其一个周期。
二、不同函数对称性的探究
定理4.函数y=f(x)与y=2b-f(2a-x)的图像关于点A(a,b)成中心对称。
定理5.①函数y=f(x)与y=f(2a-x)的图像关于直线x=a成轴对称。
②函数y=f(x)与a-x=f(a-y)的图像关于直线x+y=a成轴对称。
③函数y=f(x)与x-a=f(y+a)的图像关于直线x-y=a成轴对称。
定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于直线x-y=a的轴对称点为P'(x1,y1),则x1=a+y0,y1=x0-a,∴x0=a+y1,y0=x1-a代入y0=f(x0)之中得x1-a=f(a+y1)∴点P'(x1,y1)在函数x-a=f(y+a)的图像上。
同理可证:函数x-a=f(y+a)的图像上任一点关于直线x-y=a的轴对称点也在函数y=f(x)的图像上。故定理5中的③成立。
推论:函数y=f(x)的图像与x=f(y)的图像关于直线x=y成轴对称。
三、三角函数图像的对称性列表
函数对称中心坐标对称轴方程y=sinx(kπ,0)x=kπ+π/2y=cosx(kπ+π/2,0)x=kπy=tanx(kπ/2,0)无
注:①上表中k∈Z
②y=tanx的所有对称中心坐标应该是(kπ/2,0),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y=tanx的所有对称中心坐标是(kπ,0),这明显是错的。
四、函数对称性应用举例
例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=f(5+x),则f(x)一定是()(第十二届希望杯高二第二试题)
(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数
解:∵f(10+x)为偶函数,∴f(10+x)=f(10-x).
∴f(x)有两条对称轴x=5与x=10,因此f(x)是以10为其一个周期的周期函数,∴x=0即y轴也是f(x)的对称轴,因此f(x)还是一个偶函数。
故选(A)
例2:设定义域为R的函数y=f(x)、y=g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y=x对称,若g(5)=1999,那么f(4)=()。
(A)1999;(B)2000;(C)2001;(D)2002。
解:∵y=f(x-1)和y=g-1(x-2)函数的图像关于直线y=x对称,
∴y=g-1(x-2)反函数是y=f(x-1),而y=g-1(x-2)的反函数是:y=2+g(x),∴f(x-1)=2+g(x),∴有f(5-1)=2+g(5)=2001
故f(4)=2001,应选(C)
例3.设f(x)是定义在R上的偶函数,且f(1+x)=f(1-x),当-1≤x≤0时,
f(x)=-x,则f(8.6)=_________(第八届希望杯高二第一试题)
解:∵f(x)是定义在R上的偶函数∴x=0是y=f(x)对称轴;
又∵f(1+x)=f(1-x)∴x=1也是y=f(x)对称轴。故y=f(x)是以2为周期的周期函数,∴f(8.6)=f(8+0.6)=f(0.6)=f(-0.6)=0.3
例4.函数y=sin(2x+)的图像的一条对称轴的方程是()(92全国高考理)(A)x=-(B)x=-(C)x=(D)x=
解:函数y=sin(2x+)的图像的所有对称轴的方程是2x+=k+
∴x=-,显然取k=1时的对称轴方程是x=-故选(A)
例5.设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,
f(x)=x,则f(7.5)=()
(A)0.5(B)-0.5(C)1.5(D)-1.5
解:∵y=f(x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f(x+2)=-f(x)=f(-x),即f(1+x)=f(1-x),∴直线x=1是y=f(x)对称轴,故y=f(x)是周期为2的周期函数。
∴f(7.5)=f(8-0.5)=f(-0.5)=-f(0.5)=-0.5故选(B)
1,兴趣是最好的老师。首先要提高学生学习的学习兴趣,通过挖掘数学知识内在美、游戏活动和学生互相交流活动可以提高学习兴趣。
2,训练是学习数学的有效性的保障。光是听得懂是学不好数学的,知识必须要通过训练才能转化为能力,才能解决数学问题。
正如网上某位大神所说,幂函数可以解决很多实际问题,银行利率,地震强度等等。
如题所示:
幂函数:银行存款计复利
例1:按复利计算利率的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数。如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?(精确到0.01元)
解析:复利是一种计算利息的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。已知本金是a元,一期后的本利和为;二期后的本利和为;三期后的本利和为;……
x期后的本利和为。
将a=1000元,r=2.25%,x=5代入上式得:
(计算器算出)
答:复利函数式为,5期后得本利和为1117.68元。
点评:在实际问题中,常常遇到有关平均增长率的问题,如果原产值为N,平均增长率为p,则对于时间x的总产值或总产量y,就可以用公式表示,解决平均增长率问题,就需要用这个函数式。
例2:设在海拔xm处的大气压强是yPa,y与x之间的函数关系是,其中c,k是常数,测得某地某天海平面的大气压强为1.01×105Pa,1000m高空的大气压强为0.90×105Pa,求600m高空的大气压强?(保留3个有效数字)解析:由题意,得:,由①得:c=1.01
×105,代入②,得:
,利用计算器得;1000k=-
0.115,所以k=-1.15×10-
4,从而函数关系是。再将x=600代入上述函数式得,利用计算器得:y≈9.42×104答:在600m高空得大气压强约为9.42×104Pa。
例3:20世纪30年代,查尔斯·里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大。这就是我们常说的里氏震级M,其计算公式为:,其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差)。
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1)
(2)5级地震给人的震感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍(精确到1)?解析:(1)
因此,这是一次约为里氏4.3级的地震。
(2)由可得
当M=7.6时,地震的最大振幅为A1=A0·107。
6;当M=5时,地震的最大振幅为A2=A0·105。
所以,两次地震的最大振幅之比是
故7.6级地震最大振幅约是5级地震最大振幅的398倍
Copyright 2005-2023 yaolan.com 〖摇篮网〗 版权所有 备案号:滇ICP备2022004586号-57
声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告 侵权删除 478923@qq.com