实际问题与方程教案(五年级实际问题与方程公式)

admin时间:2024-01-13 08:09:40来源:本站整理点击:

请您根据方程10x+14x=120编写一个实际问题并解管

小中的钱是小明钱的10倍,小华的钱是小明钱的14倍,小华和小中共120元,求小明的钱。解:设小明有x元钱10x+14x=12024x=120x=120÷24x=5答:小明共5元钱。

一元一次方程实际应用的工程问题怎么导入

这个直接在系统里将两个合并就导入了。

五年级实际问题与方程公式

和差问题的公式(和+差)÷2=大数(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)

植树问题

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)

2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量

利润与折扣问题利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学图形计算公式

1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a面积=边长×边长S=a×a

2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a

3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab

4、长方体(V:体积s:面积a:长b:宽h:高)

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形(s:面积a:底h:高)面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6、平行四边形(s:面积a:底h:高)

面积=底×高s=ah

7、梯形(s:面积a:上底b:下底h:高)

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8、圆形(S:面积C:周长лd=直径r=半径)

(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л

9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2

(3)体积=底面积×高(4)体积=侧面积÷2×半径

10、圆锥体(v:体积h:高s:底面积r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

13、和倍问题

和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)

14、差倍问题

差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)

15、相遇问题

相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

常用单位换算

长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

面积单位换算

1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米

1平方分米=100平方厘米1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升

1立方厘米=1毫升1立方米=1000升

重量单位换算

1吨=1000千克1千克=1000克1千克=1公斤

人民币单位换算

1元=10角1角=10分1元=100分

时间单位换算

1世纪=100年1年=12月大月(31天)有:18月小月(30天)的有:49月

平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒

什么是方程方程与等式有什么联系和区别

答:含有未知数的等式,叫方程。

方程与等式有联系,也有区别。

区别:方程是含有末知数的等式,等式是不含未知数。

联系:都是等式。

例如:2x十3=200是方程。2十3=5是等式。

解决问题的解方程怎么做

解方程的步骤包括明确方程类型、化简方程、移项、因式分解、提取平方根等,最终求出未知数的解。解方程是数学中重要的基础内容,它在数学、物理、工程等多个领域都有广泛的应用,比如求解电路中的电流电压、预测物理学中的运动状态等。因此,掌握解方程的方法和技巧对于提高数学能力和解决实际问题都非常重要。

五年级上册实际问题与方程如何解答

列方程解决问题

方法步骤:

1、读题、分析题意(从要求入手)。

【找出已知信息(包括隐含信息剔除无用信息)和未知(即要求信息);注意单位是否一致;不一致先转化】

2、解:设未知数。

【有两个未知数,通常设小的那个,另一个用含设的未知数的关系式表示。】

和倍或差倍应用题的解答方法:设一倍的量为x,另一个量根据倍数关系表示为几x。再根据两个量的和或差列出方程。

方程是什么在实际生活中有什么用途

方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。

所有逆思维的数学问题,都可以用方程解决,用方程解题也非常方便,因此,方程在解决数学问题的应用中作用很大。

相关文章
儿童视频
推荐文章

关于摇篮网

Copyright 2005-2023 yaolan.com 〖摇篮网〗 版权所有 备案号:滇ICP备2022004586号-57

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告 侵权删除 478923@qq.com

sitemap.xml